By Topic

Design Considerations for Single-Chip Computers of the Future

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In the mid 1980's it will be possible to put a million devices (transistors or active MOS gate electrodes) onto a single silicon chip. General trends in the evolution of silicon integrated circuits are reviewed and design constraints for emeging VLSI circuits are analyzed. Desirable architectural features in modem computers are then discussed and consequences for an implementation with large-scale integrated circuits are investigated. The resulting recommended processor design includes features such as an on-chip memory hierarchy, multiple homogeneous caches for enhanced execution parallelism, support for complex data structures and high-level languages, a flexible instruction set, and communication hardware. It is concluded that a viable modular building block for the next generation of computing systems will be a self-contained computer on a single chip. A tentative allocation of the one million transistors to the various functional blocks is given, and the result is a memory intensive design.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:15 ,  Issue: 1 )