Cart (Loading....) | Create Account
Close category search window
 

MOS switched-capacitor filters with reduced number of operational amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Using voltage inverter switches, exact analog sampled-data equivalents of Rs, Ls and Cs, as well as unit elements, can be designed with MOS capacitors and switches. Due to the underlying bilinear transformation, no limitation other than the Nyquist limit is imposed on the ratio of corner to sampling frequency. For an nth order filter, the number of voltage inverter switches is (n+1)/4 to (n+1)/2. A 3.4 kHz third-order Chebyshev low-pass CMOS circuit is described in detail. It uses only one voltage inverter switch implemented by a switched op amp integrator. The sampling frequency is 24 kHz, the dynamic range exceeds 70 dB and the chip area is 1.2 mm/SUP 2/. A CMOS voltage inverter switch, which has zero DC power and occupies only 0.09 mm/SUP 2/ is presented, whose dynamic range exceeds 85 dB. This allows low power switched capacitor filters without operational amplifiers and with a frequency capability approaching the megahertz range.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:14 ,  Issue: 6 )

Date of Publication:

Dec. 1979

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.