By Topic

Considerations for high-speed and analog-circuit-compatible I/sup 2/L and the analysis of Poly I/sup 2/L

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Expressions are derived for minimum propagation-delay time and DC operational conditions in the I/SUP 2/L circuit configuration, and are applied to several kinds of I/SUP 2/L limitations. 1) Ultimately achievable (roughly 0.34 ns, fan-out of 2) and reasonably expected minimum propagation-delay values (0.75-1.0 ns considering simple n-p-n limitations) are estimated. 2) Speed improvements of the standard I/SUP 2/L structure via doping level adjustment is shown to be minimal (it is primarily useful for ensurance of DC operation). 3) Requiring analog compatibility further constrains performance; a figure of merit of about 1 to 2 V/ns is derived and experimentally confirmed for the product of analog device BV/SUB CBO/ and I/SUP 2/L speed for standard epitaxial I/SUP 2/L processing. Radical techniques using dual buried layers, dual epitaxial layers, or Poly I/SUP 2/L offer considerably enhanced performance by attacking the parameter with primary leverage on these tradeoffs: base-to-buried layer spacing W/SUB epi/. Analysis of Poly I/SUP 2/L reveals specific advantages.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:14 ,  Issue: 5 )