By Topic

An advanced MOS-IC process technology using local oxidation ot oxygen-doped polysilicon films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

An O-POS (oxygen-doped polysilicon) film, deposited directly on silicon, is oxidized locally to create an active gate area. The electrical properties for the active gate area are the same as conventional p- and n-channel MOS devices, but the field area has an extremely high threshold voltage for both p- and n-type silicon substrates. The electrical properties in metal/oxidized O-POS/silicon and metal/oxide/O-POS/silicon structures have been investigated while varying the O-POS film thickness, oxygen concentration, local oxidation time, and silicon substrate resistivity. According to these basic studies, it is proposed that the high density of trapping centers existing in O-POS film is responsible for the high field threshold voltage. A applications of this process technology, a silicon-gate CMOS integrated circuit, and a high voltage n-channel MOS device are discussed.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:13 ,  Issue: 4 )