Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

128-bit multicomparator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A 128-bit multicomparator was designed to perform the search-sort function on arbitrary length data strings. Devices can be cascaded for longer block lengths or paralleled for bit-parallel, word-serial applications. The circuit utilizes a 3-phase static-dynamic shift register cell for data handling and a unique gated EXCLUSIVE-NOR circuit to accomplish the compare function. The compare operation is performed bit parallel between a `data' register and a `key' register with a third `mask' register containing DON'T CARE bits that disable the comparator. The multicomparator was fabricated using p-channel silicon-gate metal-oxide-semiconductor (MOS) technology on a 107/spl times/150 mil chip containing 3350 devices. With transistor-transistor logic (TTL) input, data rates in excess of 2 MHz have been attained. The average power dissipation was 250 mW in the dynamic mode and 300 mW in the static mode.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:11 ,  Issue: 5 )