By Topic

Unit cell approach to full-wave analysis of meander delay line using FDTD periodic structure modeling method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heeseok Lee ; Dept. of Electr. Eng. & Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea ; Joungho Kim

Unit cell modeling is performed to determine the effect of electromagnetic coupling on the propagation characteristics of a meander delay line, which is widely used in printed circuit boards and packages. Since the design of a delay line must guarantee several tens of picosecond timing margin in modern high-speed packages and board level interconnections, a penetrating understanding of the meander effect is essential. The propagation delay, the characteristic impedance, and the stop-band characteristic of the meander delay line have been carefully investigated based on a full-wave analysis using the finite-difference time-domain (FDTD) periodic structure modeling method. The periodicity of the meander line is utilized based on Floquet's theorem, resulting in a reduction of the computational domain in the FDTD simulation and providing a unit cell model of the meander line. The unit cell modeling of the meander delay line shows the effect of electromagnetic coupling in meander line structure on the reduction of the propagation delay. Also, an analysis based on the unit cell modeling was confirmed by time-domain reflection/transmission measurements.

Published in:

IEEE Transactions on Advanced Packaging  (Volume:25 ,  Issue: 2 )