Cart (Loading....) | Create Account
Close category search window
 

Design of PI and PID controllers with transient performance specification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Basilio, J.C. ; Escola de Engenharia, Univ. Fed. do Rio de Janeiro, Brazil ; Matos, S.R.

Proportional-integral-derivative (PID) controllers are widely used in industrial control systems because of the reduced number of parameters to be tuned. The most popular design technique is the Ziegler-Nichols method, which relies solely on parameters obtained from the plant step response. However, besides being suitable only for systems with monotonic step response, the compensated systems whose controllers are tuned in accordance with the Ziegler-Nichols method have generally a step response with a high-percent overshoot. In this paper, tuning methods for proportional-integral (PI) and PID controllers are proposed that, like the Ziegler-Nichols method, need only parameters obtained from the plant step response. The methodology also encompasses the design of PID controllers for plants with underdamped step response and provides the means for a systematic adjustment of the controller gain in order to meet transient performance specifications. In addition, since all the development of the methodology relies solely on concepts introduced in a frequency-domain-based control course, the paper has also a didactic contribution.

Published in:

Education, IEEE Transactions on  (Volume:45 ,  Issue: 4 )

Date of Publication:

Nov 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.