Cart (Loading....) | Create Account
Close category search window
 

Improvement of microscopic and macroscopic uniformity in 4-inch InP substrate for IC application by vertical boat growth

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kawase, T. ; Sumitomo Electr. Industries Ltd., Hyogo, Japan ; Hosaka, N. ; Hashio, K. ; Matsushima, M.
more authors

Macroscopic and microscopic uniformity in 4-inch InP substrates has been significantly improved by new developments in SEI's Vertical Boat (VB) technique. In this paper, we report improvements, in etch-pit density (EPD) distribution, micro-resistivity profiles, and photoluminescence (intensity and 4.2K spectra), for 4-inch InP VB in comparison to both VCZ (SEI proprietary Vapor pressure controlled Chockralski) and commercially available VGF substrates.

Published in:

Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2002. 24th Annual Technical Digest

Date of Conference:

20-23 Oct. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.