Cart (Loading....) | Create Account
Close category search window
 

A simplification of boundary element model with rotational symmetry in electromagnetic field analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsuboi, H. ; Dept. of Electr. & Electron. Eng., Okayama Univ., Japan ; Sakurai, A. ; Naito, T.

A simplification method for the boundary element model with rotational symmetry is described. When the boundary element model has a rotational symmetry, the region to be treated for boundary integrations can be reduced to the fundamental boundary surface. This reduction is possible because the coefficient matrix of the final simultaneous equations for the model can be transformed to a block diagonal matrix by a transformation matrix using spatial eigenmodes. The simplification reduces the computation time and storage capacity because the coefficient matrix of the final simultaneous equations of the boundary element method is dense. Computation results for a four-wire method demonstrate the applicability of the proposed simplification method

Published in:

Magnetics, IEEE Transactions on  (Volume:26 ,  Issue: 5 )

Date of Publication:

Sep 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.