By Topic

Learning from negative example in relevance feedback for content-based image retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. L. Kherfi ; CoRIMedia, Sherbrooke Univ., Que., Canada ; D. Ziou ; A. Bernardi

In this paper, we address some issues related to the combination of positive and negative examples to perform more efficient image retrieval. We analyze the relevance of negative example and how it can be interpreted. Then we propose a new relevance feedback model that integrates both positive and negative examples. First, a query is formulated using positive example, then negative example is used to refine the system's response. Mathematically, relevance feedback is formulated as an optimization of intra and inter variances of positive and negative examples.

Published in:

Pattern Recognition, 2002. Proceedings. 16th International Conference on  (Volume:2 )

Date of Conference:

2002