By Topic

Face detection using a modified radial basis function neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. Huang ; Tokyo Univ. of Agric. & Technol., Japan ; A. Shimizu ; F. Kobatake

Face detection from cluttered images is very challenging due to the diverse variation of face appearance and the complexity of image background. In this paper, we propose a neural network based approach for locating frontal views of human faces in cluttered images. We use a radial basis function network (RBFN) for separation of face and non-face patterns and the complexity of RBFN is reduced by principal component analysis (PCA). The influence of the number of hidden units and the configuration of basis functions on the detection performance was investigated. To further improve the performance, we integrate the distance from feature subspace into the RBFN. The proposed method has achieved high detection rate and low false positive rate on testing a large number of images.

Published in:

Pattern Recognition, 2002. Proceedings. 16th International Conference on  (Volume:2 )

Date of Conference:

2002