Cart (Loading....) | Create Account
Close category search window
 

Efficient join-index-based spatial-join processing: a clustering approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shashi Shekhar ; Dept. of Comput. Sci., Minnesota Univ., Minneapolis, MN, USA ; Chang-Tien Lu ; Chawla, S. ; Ravada, S.

A join-index is a data structure used for processing join queries in databases. Join-indices use precomputation techniques to speed up online query processing and are useful for data sets which are updated infrequently. The I/O cost of join computation using a join-index with limited buffer space depends primarily on the page-access sequence used to fetch the pages of the base relations. Given a join-index, we introduce a suite of methods based on clustering to compute the joins. We derive upper bounds on the length of the page-access sequences. Experimental results with Sequoia 2000 data sets show that the clustering method outperforms existing methods based on sorting and online-clustering heuristics.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:14 ,  Issue: 6 )

Date of Publication:

Nov/Dec 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.