Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Binary rule generation via Hamming Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Muselli, M. ; Ist. per i Circuiti Elettronici, Consiglio Nazionale delle Ricerche, Genova, Italy ; Liberati, D.

The generation of a set of rules underlying a classification problem is performed by applying a new algorithm called Hamming Clustering (HC). It reconstructs the AND-OR expression associated with any Boolean function from a training set of samples. The basic kernel of the method is the generation of clusters of input patterns that belong to the same class and are close to each other according to the Hamming distance. Inputs which do not influence the final output are identified, thus automatically reducing the complexity of the final set of rules. The performance of HC has been evaluated through a variety of artificial and real-world benchmarks. In particular, its application in the diagnosis of breast cancer has led to the derivation of a reduced set of rules solving the associated classification problem.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:14 ,  Issue: 6 )