By Topic

PC-OPT: optimal offline prefetching and caching for parallel I/O systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Kallahalla ; Hewlett-Packard Labs., Palo Alto, CA, USA ; P. J. Varman

We address the problem of prefetching and caching in a parallel I/O system and present a new algorithm for parallel disk scheduling. Traditional buffer management algorithms that minimize the number of block misses are substantially suboptimal in a parallel I/O system where multiple I/Os can proceed simultaneously. We show that in the off line case, where a priori knowledge of all the requests is available, PC-OPT performs the minimum number of I/Os to service the given I/O requests. This is the first parallel I/O scheduling algorithm that is provably offline optimal in the parallel disk model. In the online case, we study the context of global L-block lookahead, which gives the buffer management algorithm a lookahead consisting of L distinct requests. We show that the competitive ratio of PC-OPT, with global L-block lookahead, is Θ(M - L + D), when L ≤ M, and Θ(MD/L), when L > M, where the number of disks is D and buffer size is M.

Published in:

IEEE Transactions on Computers  (Volume:51 ,  Issue: 11 )