Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Publicly detectable watermarking for intellectual property authentication in VLSI design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gang Qu ; Electr. & Comput. Eng. Dept., Maryland Univ., College Park, MD, USA

Highlighted with the newly released intellectual property (IP) protection white paper by VSI Alliance, the protection of virtual components or IPs in very large scale integration (VLSI) design has received a great deal of attention recently. Digital signature/watermark is one of the most promising solutions among the known protection mechanisms. It provides desirable proof of authorship without rendering the IP useless. However, it makes the watermark detection, which is as important as watermarking, an NP-hard problem. In fact, the tradeoff between hard-to-attack and easy-to-detect and the lack of efficient detection schemes are the major obstacles for digital signatures to thrive. In this paper, the authors propose a new watermarking method which allows the watermark to be publicly detected without losing its strength and security. The basic idea is to create a cryptographically strong pseudo-random watermark, embed it into the original problem as a special (which the authors call mutual exclusive) constraint, and make it public. The authors combine data-integrity technique and the unique characteristics in the design of VLSI IPs such that adversaries will not gain any advantage from the public watermarking for forgery. This new technique is compatible with the existing constraint-based watermarking/fingerprinting techniques. The resulting public-private watermark maintains the strength of a watermark and provides easy detectability with little design overhead. The authors build the mathematical framework for this approach based on the concept of mutual exclusive constraints. They use popular VLSI CAD problems, namely technology mapping, partitioning, graph coloring, FPGA design, and Boolean satisfiability, to demonstrate the public watermark's easy detectability, high credibility, low design overhead, and robustness.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:21 ,  Issue: 11 )