Cart (Loading....) | Create Account
Close category search window
 

A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian-Xin Xu ; Dept. of Electr. Eng., Nat. Univ. of Singapore, Singapore ; Ying Tan

A new learning control approach is developed in this note to address a class of nonlinear systems with time-varying parametric uncertainties. The concept of composite energy function (CEF), which provides the system information along both time and learning repetition horizons, is introduced in the analysis of learning control. CEF consists of two parts. The first part is a standard Lyapunov function,. which is used to access system behavior along time horizon during each learning cycle. The second part is an L2 norm of parametric learning errors which reflects the variation of the system status when the control system is updated on the basis of learning cycles. The proposed learning control algorithm achieves asymptotical convergence along a learning repetition horizon. At the same time, the boundedness and pointwise convergence of the tracking error along time horizon is guaranteed. The proposed learning control strategy is applicable to quite general classes of nonlinear systems without requiring the global Lipschitz continuity condition and zero relative degree condition.

Published in:

Automatic Control, IEEE Transactions on  (Volume:47 ,  Issue: 11 )

Date of Publication:

Nov 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.