By Topic

Estimation of kinetic parameters without input functions: analysis of three methods for multichannel blind identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Y. Riabkov ; Dept. of Phys., Utah Univ., Salt Lake City, UT, USA ; E. V. R. Di Bella

Compartment modeling of dynamic medical image data implies that the concentration of the tracer over time in a particular region of the organ of interest is well modeled as a convolution of the tissue response with the tracer concentration in the blood stream. The tissue response is different for different tissues while the blood input is assumed to be the same for different tissues. The kinetic parameters characterizing the tissue responses can be estimated by multichannel blind identification methods. These algorithms use the simultaneous measurements of concentration in separate regions of the organ; if the regions have different responses, the measurement of the blood input function may not be required. Three blind identification algorithms are analyzed here to assess their utility in medical imaging: eigenvector-based algorithm for multichannel blind deconvolution; cross relations; and iterative quadratic maximum-likelihood (IQML). Comparisons of accuracy with conventional (not blind) identification techniques where the blood input is known are made as well. Tissue responses corresponding to a physiological two-compartment model are primarily considered. The statistical accuracies of estimation for the three methods are evaluated and compared for multiple parameter sets. The results show that IQML gives more accurate estimates than the other two blind identification methods.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:49 ,  Issue: 11 )