By Topic

Removal of cardiopulmonary resuscitation artifacts from human ECG using an efficient matching pursuit-like algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Husoy, J.H. ; Dept. of Electr. & Comput. Eng., Stavanger Univ. Coll., Norway ; Eilevstjonn, J. ; Eftestol, T. ; Aase, S.O.
more authors

We present a computationally efficient and numerically robust solution to the problem of removing artifacts due to precordial compressions and ventilations from the human electrocardiogram (ECG) in an emergency medicine setting. Incorporated into automated external defibrillators, this would allow for simultaneous ECG signal analysis and administration of precordial compressions and ventilations, resulting in significant clinical improvement to the treatment of cardiac arrest patients. While we have previously demonstrated the feasibility of such artifact removal using a multichannel Wiener filter, we here focus on an efficient matching pursuit-like approach making practical real-time implementations of such a scheme feasible for a wide variety of sampling rates and filter lengths. Using more realistic data than what have been previously available, we present evidence showing the excellent performance of our approach and quantify its computational complexity.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:49 ,  Issue: 11 )