By Topic

Enhancement of phase clustering in the EEG/MEG gamma frequency band anticipates transitions to paroxysmal epileptiform activity in epileptic patients with known visual sensitivity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kalitzin, S. ; Med. Phys. Dept., Dutch Epilepsy Clinics Found. (SEIN), Heemstede, Netherlands ; Parra, J. ; Velis, D.N. ; da Silva, F.H.L.

A new analytical method for quantifying brain activity from magnetoelectroencephalogram (MEG) and electroencephalogram (EEG) recordings during periodic light stimulation is proposed. It consists in estimating the phase clustering of harmonically related frequency components of a subject's MEG/EEG responses evoked by the light stimulation. The method was developed to test the hypothesis that changes in the dynamics of brain systems in the course of intermittent photic stimulation (IPS) may precede the transition to seizure activity in photosensitive patients. We assumed that such changes would be reflected in the phase of harmonic components of the evoked responses. Thus, we determined the phase clustering for different harmonic components of these MEG/EEG signals. We found that the patients who develop epileptiform discharges during IPS present an enhancement of the phase clustering index at the gamma frequency band, compared with that at the driving frequency. We introduce a quantity-relative phase clustering index (rPCI)-by means of which this enhancement can be quantified. We argue that this quantity reflects the degree of excitability of the underlying dynamical system and it can indicate presence of nonlinear dynamics. rPCI can be applied to detect transitions to epileptic seizure activity in patients with known sensitivity to IPS.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:49 ,  Issue: 11 )