Cart (Loading....) | Create Account
Close category search window

Geomagnetically induced current effects on transformers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Price, P.R. ; Infraco Sub Surface Ltd., London, UK

Geomagnetically induced currents (GICs) can cause saturation of the magnetic circuit of transformers in a power system. This saturation can increase the MVAr absorption of the transformers, leading to voltage-control problems, generating significant harmonic currents, and cause heating of the internal components of the transformer itself, leading to gas relay alarm/operation as well as possible damage. This paper sets out the methods used to examine these effects using a mathematical model explicitly incorporating the electric and magnetic circuits, including the shunting effect of the tank to predict the current and flux waveforms. The model has been used to predict GIC effects for a variety of winding connections for single-, three-, and five-limb core-type transformers connected to the National Grid Company plc transmission system in England and Wales. The size and form of the return limbs along with the tank shunting effect determine the magnitude and the often complex shape of the waveforms resulting from GIC. Field and factory DC injection tests on various types of transformers have been conducted to validate the model and gain an insight into the magnetic behavior of transformers. With the aid of finite-element analysis (FEA) techniques and a consideration of the various constructional arrangements of the core and coils in the tank, it is possible to evaluate the power losses and accompanying temperature rises of the core, structural components, windings, and tank. Some guidance on the acceptable GIC current levels for various transformer types is given.

Published in:

Power Delivery, IEEE Transactions on  (Volume:17 ,  Issue: 4 )

Date of Publication:

Oct 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.