By Topic

Burst-mode and ScanSAR interferometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Holzner ; German Aerosp. Center, Wessling, Germany ; R. Bamler

ScanSAR interferometry is an attractive option for efficient topographic mapping of large areas and for monitoring of large-scale motions. Only ScanSAR interferometry made it possible to map almost the entire landmass of the Earth in the 11-day Shuttle Radar Topography Mission. Also the operational satellites RADARSAT and ENVISAT offer ScanSAR imaging modes and thus allow for repeat-pass ScanSAR interferometry. This paper gives a complete description of ScanSAR and burst-mode interferometric signal properties and compares different processing algorithms. The problems addressed are azimuth scanning pattern synchronization, spectral shift filtering in the presence of high squint, Doppler centroid estimation, different phase-preserving ScanSAR processing algorithms, ScanSAR interferogram formation, coregistration, and beam alignment. Interferograms and digital elevation models from RADARSAT ScanSAR narrow modes are presented. The novel "pack-and-go" algorithm for efficient burst-mode range processing and a new time-variant fast interpolator for interferometric coregistration are introduced.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:40 ,  Issue: 9 )