By Topic

Hidden Markov model based attenuation correction for positron emission tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Anderson, J.M.M. ; Florida Univ., Gainesville, FL, USA ; Srinivasan, R. ; Mair, B.A. ; Votaw, J.

In this paper, we present a new algorithm for segmenting short-duration transmission images in positron emission tomography (PET). Additionally, we show how the information provided by the segmentation algorithm can be used to obtain accurate attenuation correction factors. The key idea behind the segmentation algorithm is that transmission images can be viewed as hidden Markov models (HMMs). Using this viewpoint and a training procedure, it is possible to incorporate both a priori anatomical information and the statistical properties of the estimator used to reconstruct the transmission images. The main advantages of the proposed segmentation algorithm, referred to as the HMM segmentation algorithm, are that it is robust and directly addresses the inhomogeneity of the lung region. Once an attenuation image is segmented; the pixel values in the various regions are replaced by more accurate attenuation coefficient values. Then, the resulting image is smoothed with a Gaussian filter and reprojected to obtain the desired attenuation correction factors. Using data from a thorax phantom and a patient, we demonstrate the effectiveness of the HMM-based attenuation correction method.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:49 ,  Issue: 5 )