By Topic

Automatic recognition of handwritten numerical strings: a recognition and verification strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
L. S. Oliveira ; Lab. d'Imagerie de Vision et d'Intelligence Artificielle, Ecole de Technologie Superieure, Montreal, Que., Canada ; R. Sabourin ; F. Bortolozzi ; C. Y. Suen

A modular system to recognize handwritten numerical strings is proposed. It uses a segmentation-based recognition approach and a recognition and verification strategy. The approach combines the outputs from different levels such as segmentation, recognition, and postprocessing in a probabilistic model. A new verification scheme which contains two verifiers to deal with the problems of oversegmentation and undersegmentation is presented. A new feature set is also introduced to feed the oversegmentation verifier. A postprocessor based on a deterministic automaton is used and the global decision module makes an accept/reject decision. Finally, experimental results on two databases are presented: numerical amounts on Brazilian bank checks and NIST SD19. The latter aims at validating the concept of modular system and showing the robustness of the system using a well-known database.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:24 ,  Issue: 11 )