Cart (Loading....) | Create Account
Close category search window
 

Lexicon-driven segmentation and recognition of handwritten character strings for Japanese address reading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cheng-Lin Liu ; Central Res. Lab., Hitachi Ltd., Kokubunji, Japan ; Koga, M. ; Fujisawa, H.

This paper describes a handwritten character string recognition system for Japanese mail address reading on a very large vocabulary. The address phrases are recognized as a whole because there is no extra space between words. The lexicon contains 111,349 address phrases, which are stored in a trie structure. In recognition, the text line image is matched with the lexicon entries (phrases) to obtain reliable segmentation and retrieve valid address phrases. The paper first introduces some effective techniques for text line image preprocessing and presegmentation. In presegmentation, the text line image is separated into primitive segments by connected component analysis and touching pattern splitting based on contour shape analysis. In lexicon matching, consecutive segments are dynamically combined into candidate character patterns. An accurate character classifier is embedded in lexicon matching to select characters matched with a candidate pattern from a dynamic category set. A beam search strategy is used to control the lexicon matching so as to achieve real-time recognition. In experiments on 3,589 live mail images, the proposed method achieved correct rate of 83.68 percent while the error rate is less than 1 percent.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 11 )

Date of Publication:

Nov 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.