Cart (Loading....) | Create Account
Close category search window

Average-rate optimal PSAM transmissions over time-selective fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ohno, S. ; Dept. of Artificial Complex Syst. Eng., Hiroshima Univ., Japan ; Giannakis, G.B.

Enabling linear minimum-mean square error (LMMSE)-based estimation of random time-selective channels, pilot-symbol-assisted modulation (PSAM) has well-documented merits as a fading counter-measure boosting bit-error rate performance. We design average-rate optimal PSAM transmissions by maximizing a tight lower bound of the average channel capacity. Relying on a simple closed-form expression of this bound in terms of the LMMSE channel estimator variance, we obtain PSAM transmissions with optimal spacing of pilot symbols and optimal allocation of the transmit-power budget between pilot and information symbols. Equi-powered transmitted symbols, channels with special Doppler spectra, and analytical and simulation based comparisons of possible alternatives shed more light on information-theoretic aspects of PSAM-based transmissions.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:1 ,  Issue: 4 )

Date of Publication:

Oct 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.