Cart (Loading....) | Create Account
Close category search window
 

Serial acquisition performance of single-carrier and multicarrier DS-CDMA over Nakagami-m fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lie-Liang Yang ; Dept. of Electron. & Comput. Sci., Southampton Univ., UK ; Hanzo, L.

We investigate the issue of pseudo noise (PN) code acquisition in single-carrier and multicarrier (MC) direct-sequence code-division multiple-access (DS-CDMA) systems, when the channel is modeled by frequency-selective Nakagami-m (1960) fading. The PN code acquisition performance of single-carrier and MC DS-CDMA systems is analyzed and compared when communicating over Nakagami-m fading channels under the hypothesis of multiple synchronous states (H1 cells) in the uncertainty region of the PN code. In the context of MC DS-CDMA, the code acquisition performance is evaluated, when the correlator outputs of the subcarriers associated with the same phase of the local PN code replica are noncoherently combined by using equal gain combining (EGC) or selection combining (SC) schemes. The performance comparison of the above mentioned schemes shows that the code acquisition performance of the MC DS-CDMA scheme, especially when using the EGC scheme, is more robust, than that of single-carrier DS-CDMA schemes communicating over the multipath Nakagami-m fading channels encountered. However, our code acquisition performance comparison also shows that if the detection threshold was set inappropriately, the performance might be degraded, even if the channel fading becomes less severe.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:1 ,  Issue: 4 )

Date of Publication:

Oct 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.