By Topic

Performance analysis of time-hopping spread-spectrum multiple-access systems: uncoded and coded schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Forouzan, A.R. ; Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran ; Nasiri-kenari, M. ; Salehi, J.A.

An ultra-wide bandwidth time-hopping spread-spectrum code division multiple-access system employing a binary PPM signaling has been introduced by Scholtz (1993), and its performance was obtained based on a Gaussian distribution assumption for the multiple-access interference. In this paper, we begin first by proposing to use a practical low-rate error correcting code in the system without any further required bandwidth expansion. We then present a more precise performance analysis of the system for both coded and uncoded schemes. Our analysis shows that the Gaussian assumption is not accurate for predicting bit error rates at high data transmission rates for the uncoded scheme. Furthermore, it indicates that the proposed coded scheme outperforms the uncoded scheme significantly, or more importantly, at a given bit error rate, the coding scheme increases the number of users by a factor which is logarithmic in the number of pulses used in time-hopping spread-spectrum systems.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:1 ,  Issue: 4 )