Cart (Loading....) | Create Account
Close category search window
 

Performance and testbed study of topology reconfiguration in IP over optical networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Liu, K.H. ; Telcordia Technol., Red Bank, NJ, USA ; Changdong Liu ; Pastor, J.L. ; Roy, A.
more authors

With the widespread deployment of Internet protocol/wavelength division multiplexing (IP/WDM) networks, it becomes necessary to develop traffic engineering (TE) solutions that can effectively exploit WDM reconfigurability. More importantly, experimental work on reconfiguring lightpath topology over testbed IP/WDM networks is needed urgently to push the technology forward to operational networks. This paper presents a performance and testbed study of topology reconfiguration for IP/WDM networks. IP/WDM TE can be fulfilled in two fashions, overlay vs. integrated, which drives the network control software, e.g., routing and signaling protocols, and selects the corresponding network architecture model, e.g., overlay or peer-to-peer. We present a traffic management framework for IP over reconfigurable WDM networks. Three "one-hop traffic maximization"-oriented heuristic algorithms for lightpath topology design are introduced. A reconfiguration migration algorithm to minimize network impact is presented. To verify the performance of the topology design algorithms, we have conducted extensive simulation study. The simulation results show that the topologies designed by the reconfiguration algorithms outperform the fixed topology with throughput gain as well as average hop-distance reduction. We describe the testbed network and software architecture developed in the Defense Advanced Research Projects Agency (DARPA) Next Generation Internet (NGI) SuperNet Network Control and Management project and report the TE experiments conducted over the testbed.

Published in:

Communications, IEEE Transactions on  (Volume:50 ,  Issue: 10 )

Date of Publication:

Oct 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.