By Topic

Hidden Markov model classification of myoelectric signals in speech

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

It has been demonstrated that myoelectric signal (MES) automatic speech recognition (ASR) using an hidden Markov model (HMM) classifier is resilient to temporal variance, which offers improved robustness compared to the linear discriminant analysis (LDA) classifier. The overall performance of the MES ASR can be further enhanced by optimizing the features and structure of the HMM classifier to improve classification rate. Nevertheless, the HMM classifier has already shown that it would effectively complement an acoustic classifier in a multimodal ASR system.

Published in:

Engineering in Medicine and Biology Magazine, IEEE  (Volume:21 ,  Issue: 5 )