By Topic

High frequency dynamic imaging of domains in thin film heads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liu, Francis H. ; Data Storage Syst. Center, Carnegie Mellon Univ., Pittsburgh, PA, USA ; Schultz, Mark D. ; Kryder, M.H.

A wide-field magnetooptic domain observation system with a time resolution of 10 ns has been developed to study magnetization dynamics in thin-film heads. The instantaneous dynamic response on the top yoke of thin-film recording heads is examined at any chosen instant within the drive current cycle at frequencies up to 20 MHz. Different phase responses from different domain walls in the head are observed and interpreted in terms of hysteretic wall motion, effective field density variation in the head, and wall orientations relative to the flux conduction direction. Two different flux conduction mechanisms associated with two different domain structures in the central region of the head are observed and discussed. Flux conduction in the center of the head by motion of backgap walls and magnetization rotation for domain structures with and without the backgap walls was observed. The domain structure with the backgap walls is probably undesirable because the backgap wall motion may cause a decrease in head efficiency during high-frequency operation and could cause noise during read-back

Published in:

Magnetics, IEEE Transactions on  (Volume:26 ,  Issue: 5 )