Cart (Loading....) | Create Account
Close category search window

Analysis of 1/f noise in CMOS preamplifier with CDS circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tae-Hoon Lee ; Dept. of Nucl. & Quantum Eng., Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea ; Gyuseong Cho ; Hee Joon Kim ; Seung Wook Lee
more authors

The noise of a CMOS charge-sensitive preamplifier (CSA) and correlated double sample-and-hold (CDS) circuit matching a capacitive source is calculated to analyze the relative portions of thermal and 1/f noise. In most radiation detector systems, a PMOS transistor is used as the input device because its 1/f noise is lower than that of the NMOS. However, to study the 1/f noise reduction action of a CDS circuit in the 1/f noise dominant condition, an NMOS transistor is deliberately chosen as the input transistor of the CSA. The theoretical minimum number of equivalent noise charge (ENC) that can be achieved in this system is about 1700 electrons rms for a 5-pF detector capacitance. To demonstrate the theoretical analysis, a chip of CSA and CDS was designed in a 0.5-μm CMOS technology. The main amplifier is a differential input single-ended folded cascode, and its measured gain bandwidth is more than 5 MHz. The measured ENCs of the CSA shaper and the CSA-CDS systems are 2105 and 3046 electrons rms, respectively.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:49 ,  Issue: 4 )

Date of Publication:

Aug 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.