Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Experimental study on reducing cogging torque and core power loss in axial-flux permanent-magnet machines with slotted winding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Caricchi, F. ; Dept. of Electr. Eng., Rome Univ., Italy ; Capponi, F.G. ; Crescimbini, F. ; Solero, L.

The axial flux permanent magnet machine (AFPM) topology is suited for direct-drive applications, and due to their enhanced flux weakening capability AFPMs having slotted winding are the most promising candidate for use in wheel-motor drives. In consideration of that, this paper deals with an experimental study devoted to investigate a number of technical solutions to be used in AFPMs having a slotted winding in order to achieve substantial reduction of cogging torque and power loss in the stator core. To conduct such an experimental study, a laboratory machine was purposely built incorporating facilities that allow easy-to-achieve off-line modifications of the overall magnetic arrangement at the machine air gaps, such as magnet skewing, angular shifting between rotor discs and accommodation of either PVC or Somaloy wedges for closing the slot openings. The paper discusses experimental results and gives guidelines for the design of AFPMs with improved performance.

Published in:

Industry Applications Conference, 2002. 37th IAS Annual Meeting. Conference Record of the  (Volume:2 )

Date of Conference:

13-18 Oct. 2002