By Topic

Gaussian source coding with spherical codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hamkins, J. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Zeger, K.

A fixed-rate shape-gain quantizer for the memoryless Gaussian source is proposed. The shape quantizer is constructed from wrapped spherical codes that map a sphere packing in ℝk-1 onto a sphere in ℝk, and the gain codebook is a globally optimal scalar quantizer. A wrapped Leech lattice shape quantizer is used to demonstrate a signal-to-quantization-noise ratio within 1 dB of the distortion-rate function for rates above 1 bit per sample, and an improvement over existing techniques of similar complexity. An asymptotic analysis of the tradeoff between gain quantization and shape quantization is also given

Published in:

Information Theory, IEEE Transactions on  (Volume:48 ,  Issue: 11 )