By Topic

Wavelet-based estimators of scaling behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Audit, B. ; Computational Genomics Group, EMBL-EBI Wellcome Trust Genome Campus, Cambridge, UK ; Bacry, E. ; Muzy, J.-F. ; Arneodo, A.

Various wavelet-based estimators of self-similarity or long-range dependence scaling exponent are studied extensively. These estimators mainly include the (bi)orthogonal wavelet estimators and the wavelet transform modulus maxima (WTMM) estimator. This study focuses both on short and long time-series. In the framework of fractional autoregressive integrated moving average (FARIMA) processes, we advocate the use of approximately adapted wavelet estimators. For these "ideal" processes, the scaling behavior actually extends down to the smallest scale, i.e., the sampling period of the time series, if an adapted decomposition is used. But in practical situations, there generally exists a cutoff scale below which the scaling behavior no longer holds. We test the robustness of the set of wavelet-based estimators with respect to that cutoff scale as well as to the specific density of the underlying law of the process. In all situations, the WTMM estimator is shown to be the best or among the best estimators in terms of the mean-squared error (MSE). We also compare the wavelet estimators with the detrended fluctuation analysis (DFA) estimator which was previously proved to be among the best estimators which are not wavelet-based estimators. The WTMM estimator turns out to be a very competitive estimator which can be further generalized to characterize multiscaling behavior

Published in:

Information Theory, IEEE Transactions on  (Volume:48 ,  Issue: 11 )