By Topic

Interlayer diffusion and specularity aspects of amorphous CoNbZr-based spin-valves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ho Gun Cho ; Div. of Mater. Sci. & Eng., Korea Univ., Seoul, South Korea ; Young Keun Kim ; Seong-Rae Lee

Interlayer diffusion, thermal stability, and specular scattering behaviors of spin-valves (SV) where CoNbZr films were employed in as under and capping layers have been investigated. CoNbZr 2 (or Ta 5)/CoFe/Cu/CoFe/IrMn/CoNbZr 0∼10 (or Ta 5) nm stacks were sputter-deposited on Si/SiO2 substrates. Both normalized MR ratio and exchange bias field (Hex) of a conventional Ta-based SV decreased monotonically about 50% upon exposure to postdeposition annealing at 300°C. On the contrary, these values increased about 50% for CoNbZr-based SVs, in particular, as CoNbZr capping thickness was less than 4 nm. Surface depth profiling results suggest that Mn diffused into the pinned CoFe layer (inward) but not into the Ta capping layer (outward) for the Ta-based SV. Unlike in the Ta capping case, a CoNbZr capping layer promoted outward Mn diffusion resulting in a formation of thin Mn-oxide layer at the surface. We attribute the increase of MR ratio in CoNbZr-capped SVs to enhanced specularity due to the presence of thin Mn-oxide. However, the specular scattering effect is reduced by increasing the thickness of CoNbZr capping layer.

Published in:

IEEE Transactions on Magnetics  (Volume:38 ,  Issue: 5 )