By Topic

The magnetic properties of magnetic nanoparticles produced by microwave flash synthesis of ferrous alcoholic solutions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Niepce, J.C. ; Lab. de Recherche sur la Reactivitedes Solides, Bourgogne Univ., Dijon, France ; Stuerga, D. ; Caillot, T. ; Clerk, J.P.
more authors

Microwave heating is an emerging technology that uses the ability of some liquids and solids to transform electromagnetic energy into heat. We present the results of experimental study of magnetic and structural properties of magnetic nanoparticles fabricated by this technique. Compared with similar nanoparticles fabricated by using a conventional heating, we obtained much smaller grain size (up to 10 nm) and very stable magnetic properties. The hysteresis loops for the samples of the nonoriented assemblies of magnetite particles have a coercive force about 100 Oe with a squareness about 0.4. The superparamagnetic fraction was found in the samples. The particles distribution on the anisotropy fields has a maximum at 200 Oe.

Published in:

Magnetics, IEEE Transactions on  (Volume:38 ,  Issue: 5 )