By Topic

Coupled-mode theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. A. Haus ; Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA ; W. Huang

The authors give a brief historic perspective of the coupled mode theory. The development and applications of the theory in microwaves in early years and in optoelectronics and fiber optics in recent years are described. They then consider lossless coupling of two modes in time. Two coupled resonance circuits, or two coupled microwave or optical resonators, are the physical examples. The start-up of a parametric oscillator is another example. Then they look at the formal derivation of coupled mode theory and consider the more general case when the modes are not energy-orthogonal and the energies are not necessarily positive. A more detailed account of the nonorthogonal coupled mode theory developed in the last five years for optical waveguides is given

Published in:

Proceedings of the IEEE  (Volume:79 ,  Issue: 10 )