By Topic

Numerical simulation of remagnetization processes in extended thin films and periodic nanodot arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Berkov, D.V. ; INNOVENT e.V., Jena, Germany ; Gorn, N.L.

The best approach to compute the long-range stray field by micromagnetic simulations of systems with periodic boundary conditions (PBCs) on regular grids is the fast Fourier transform (FFT)-based solution of the Poisson equation combined with the Ewald method to ensure a rapid convergence of the Fourier series. Here, we present the version of such an FFT-Ewald method suitable for grids of rectangular cells. Further, we have incorporated the evaluation of the near-field part of the Ewald sums into the FFT procedure used to evaluate the field of the Gaussian dipole lattice, so that no additional time is spent for the near-field computation. The method described can be used for simulation of any three- or two-dimensional systems with PBC. We present physical examples dealing with extended thin films and arrays of nanowires and nanodots.

Published in:

Magnetics, IEEE Transactions on  (Volume:38 ,  Issue: 5 )