By Topic

Combining nonlinear equalization and simple detection for high-density optical recording channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hangyu Cho ; Inf. & Telecommun. Lab., Yonsei Univ., Seoul, South Korea ; Choongchae Woo ; Daesik Hong

This paper discusses new systems for nonlinear optical recording channels. The systems combine neural network structure into simple detectors such as the multilevel decision-feedback equalizer (MDFE) and the discrete matched filter (DMF). The latter (denoted as DFNE/DMF) provides powerful nonlinear tolerance, while the former (denoted as NMDFE) shows poor tolerance because of conditional training property in the MDFE. When compared with a partial response neural equalizer with maximum-likelihood (PRNE/ML), the proposed DFNE/DMF proves to be very hardware-efficient and able to support high data rates. Simulation results show that the DFNE/DMF increases bloom tolerance up to roughly 30% at a density of S = 6.

Published in:

Magnetics, IEEE Transactions on  (Volume:38 ,  Issue: 5 )