By Topic

On distributed dynamic channel allocation in mobile cellular networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianping Jiang ; Adv. Micro Devices Inc., Sunnyvale, CA, USA ; Ten-Hwang Lai ; N. Soundarajan

Distributed dynamic channel allocation (DDCA) is a fundamental resource management problem in mobile cellular networks. It has a flavor of distributed mutual exclusion but is not exactly a mutual exclusion problem. We establish the exact relationship between the two problems. Specifically, we introduce the problem of relaxed mutual exclusion to model one important aspect of the DDCA problem. We develop a general algorithm that guarantees relaxed mutual exclusion for a single resource and prove necessary and sufficient conditions for the information structure. Considering distributed dynamic channel allocation as a special case of relaxed mutual exclusion, we apply and extend the algorithm to further address the issues that arise in distributed channel allocation such as deadlock resolution, dealing with multiple channels, design of efficient information structures, and channel selection strategies. Based on these results, we propose an example distributed channel allocation scheme using one of the information structures proposed. Analysis and simulation results are provided and show that the results of this research can be used to design more efficient distributed channel allocation algorithms

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:13 ,  Issue: 10 )