By Topic

Integrating DFT in the physical synthesis flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
L. Guiller ; Synopsys, Inc, Mountain View, CA, USA ; F. Neuveux ; S. Duggirala ; R. Chandramouli
more authors

The industry's adoption of powerful design methodologies, such as physical synthesis, formal verification, and static timing analysis are speeding the implementation and verification of multi-million gate ASICs and systems-on-chip (SoC). As the design community moves to the complete adoption of a physical synthesis flow, it is becoming evident that test synthesis must be aware of layout issues and well integrated within physical design tools. By bringing in key physical functions into the front-end of the DFT/physical synthesis flow, the designer is able to successfully meet all design and testability goals, with minimum impact on timing closure. In this paper, we present a DFT synthesis flow tightly integrated within physical synthesis to achieve physically optimized scan designs. This flow describes new test technology which uses physical information to achieve optimal scan chain partitioning, timing-driven scan ordering and DFT driven placement to dramatically reduce routing congestion, and achieve a rapid and predictable timing closure.

Published in:

Test Conference, 2002. Proceedings. International

Date of Conference: