By Topic

From an individual to a population: an analysis of the first hitting time of population-based evolutionary algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun He ; Sch. of Comput. Sci., Univ. of Birmingham, UK ; Xin Yao

Almost all analyses of time complexity of evolutionary algorithms (EAs) have been conducted for (1 + 1) EAs only. Theoretical results on the average computation time of population-based EAs are few. However, the vast majority of applications of EAs use a population size that is greater than one. The use of population has been regarded as one of the key features of EAs. It is important to understand in depth what the real utility of population is in terms of the time complexity of EAs, when EAs are applied to combinatorial optimization problems. This paper compares (1 + 1) EAs and (N + N) EAs theoretically by deriving their first hitting time on the same problems. It is shown that a population can have a drastic impact on an EA's average computation time, changing an exponential time to a polynomial time (in the input size) in some cases. It is also shown that the first hitting probability can be improved by introducing a population. However, the results presented in this paper do not imply that population-based EAs will always be better than (1 + 1) EAs for all possible problems

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:6 ,  Issue: 5 )