By Topic

Neural network surface acoustic wave RF signal processor for digital modulation recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kavalov, D. ; Sch. of Eng., Oxford Brookes Univ., UK ; Kalinin, V.

An architecture of a surface acoustic wave (SAW) processor based on an artificial neural network is proposed for an automatic recognition of different types of digital passband modulation. Three feed-forward networks are trained to recognize filtered and unfiltered binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals, as well as unfiltered BPSK, QPSK, and 16 quadrature amplitude (16QAM) signals. Performance of the processor in the presence of additive white Gaussian noise (AWGN) is simulated. The influence of second-order effects in SAW devices, phase, and amplitude errors on the performance of the processor also is studied.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:49 ,  Issue: 9 )