By Topic

Efficient dynamic focus control for three-dimensional imaging using two-dimensional arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pai-Chi Li ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Jing-Jung Huang

An efficient dynamic focus control scheme for a delay-and-sum-based beamformer is proposed. The scheme simplifies dynamic focus control by exploiting the range-dependent characteristics of the focusing delay. Specifically, the overall delay is divided into a range-independent steering term and a range-dependent focusing term. Because the focusing term is inversely proportional to range, approximation can be made to simplify dynamic focus control significantly at the price of minimal degradation in focusing quality at shallow depths. In addition, the aperture growth controlled by a constant f//sub number/ can also be utilized to devise a nonuniform quantization scheme for the focusing delay values. Efficacy of the proposed scheme is demonstrated using simulated beam plots of a fully sampled, two-dimensional array. Design procedures are also described in detail. One design example shows that, with the proposed dynamic focus control scheme, a 4096-element array only requires 227 independent controllers for the range-dependent focusing term. Moreover, only 28 non-uniform quantization levels are required to achieve the same focusing quality as that of a conventional scheme with 784 uniform quantization levels. The beam plots of a fully sampled array show that sidelobes are slightly increased below the -30 dB level for imaging depths less than 3 cm. At greater depths, there is no observable degradation.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:49 ,  Issue: 9 )