By Topic

Collaborative probabilistic constraint-based landmark localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. W. Stroupe ; Carnegie Mellon Univ., Pittsburgh, PA, USA ; T. Balch

We present an efficient probabilistic method for localization using landmarks that supports individual robot and multi-robot collaborative localization. The approach, based on the Kalman-Bucy filter, reduces computation by treating different types of landmark measurements (for example, range and bearing) separately. Our algorithm has been extended to perform two types of collaborative localization for robot teams. Results illustrating the utility of the approach in simulation and on a real robot are presented.

Published in:

Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on  (Volume:1 )

Date of Conference:

2002