By Topic

Global localization using distinctive visual features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stephen Se ; MD Robotics, Brampton, Ont., Canada ; D. Lowe ; J. Little

We have previously developed a mobile robot system which uses scale invariant visual landmarks to localize and simultaneously build a 3D map of the environment In this paper, we look at global localization, also known as the kidnapped robot problem, where the robot localizes itself globally, without any prior location estimate. This is achieved by matching distinctive landmarks in the current frame to a database map. A Hough transform approach and a random sample consensus (RANSAC) approach for global localization are compared, showing that RANSAC is much more efficient. Moreover, robust global localization can be achieved by matching a small sub-map of the local region built from multiple frames.

Published in:

Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on  (Volume:1 )

Date of Conference:

2002