By Topic

A new high resolution color flow system using an eigendecomposition-based adaptive filter for clutter rejection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kruse, D.E. ; Dept. of Biomed. Eng., California Univ., Davis, CA, USA ; Ferrara, K.W.

We present a new signal processing strategy for high frequency color flow mapping in moving tissue environments. A new application of an eigendecomposition-based clutter rejection filter is presented with modifications to deal with high blood-to-clutter ratios (BCR). Additionally, a new method for correcting blood velocity estimates with an estimated tissue motion profile is detailed. The performance of the clutter filter and velocity estimation strategies is quantified using a new swept-scan signal model. In vivo color flow images are presented to illustrate the potential of the system for mapping blood flow in the microcirculation with external tissue motion.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:49 ,  Issue: 10 )