Cart (Loading....) | Create Account
Close category search window
 

Static and dynamic approaches to modeling end-to-end routing in circuit-switched networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Young Lee ; Ceterus Networks Inc, Allen, TX, USA ; Tien, J.M.

We present two routing strategies, identified herein as static least loaded routing (SLLR) and dynamic least loaded routing (DLLR). Dynamic routing in circuit-switched networks has been an active research topic. The literature to date in this area has focused on how to choose the "best" alternate route for overflow traffic from a direct route, within a network setting referred to as the backbone network. The traffic type considered in the literature has typically been one with a single destination. Least loaded routing (LLR) is an example of a state-dependent routing that selects the least loaded two-link alternate route when traffic overflows from the direct route. Motivated by the development of an emerging traffic type, called multidestination traffic, whose destination is not necessarily limited to a single location, we provide two routing strategies that deal with both the routing of the multiple-destination traffic to the extended network dimension, which is referred to as the destination network, and the routing of the backbone network traffic via LLR. In selecting the destination for multidestination traffic, SLLR employs static information, whereas DLLR employs real-time load status information concerning the destination links. We develop fixed-point models for both DLLR and SLLR. We also validate and compare the models through simulation. The results suggest that DLLR outperforms SLLR in all the scenarios, demonstrating the benefit of state-dependent routing in an end-to-end network. Further, the DLLR scheme improves if an "incident preference" rule is adopted; the rule allows a multidestination call to first choose the incident destination link, if any.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:10 ,  Issue: 5 )

Date of Publication:

Oct 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.