Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sendur, Levent ; Electr. & Comput. Eng., Polytech. Univ. Brooklyn, NY, USA ; Selesnick, I.W.

Most simple nonlinear thresholding rules for wavelet-based denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. We only consider the dependencies between the coefficients and their parents in detail. For this purpose, new non-Gaussian bivariate distributions are proposed, and corresponding nonlinear threshold functions (shrinkage functions) are derived from the models using Bayesian estimation theory. The new shrinkage functions do not assume the independence of wavelet coefficients. We show three image denoising examples in order to show the performance of these new bivariate shrinkage rules. In the second example, a simple subband-dependent data-driven image denoising system is described and compared with effective data-driven techniques in the literature, namely VisuShrink, SureShrink, BayesShrink, and hidden Markov models. In the third example, the same idea is applied to the dual-tree complex wavelet coefficients.

Published in:

Signal Processing, IEEE Transactions on  (Volume:50 ,  Issue: 11 )