By Topic

Bistatic synthetic aperture imaging of proud and buried targets from an AUV

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
LePage, K.D. ; SACLANT Undersea Res. Centre, La Spezia, Italy ; Schmidt, H.

The use of autonomous underwater vehicles (AUVs) for the detection of buried mines is an area of current interest to the Mine CounterMeasures (MCM) community. AUVs offer the advantages of lower cost, stealth, reduced operator risk, and potentially improved coverage rates over more traditional mine hunters. However, AUVs also come with their own set of difficulties, including significant error in navigation and low communication rates with the mother platform and each other. In the case of bistatic detection scenarios, AUVs will therefore have difficulty knowing where exactly in space they are and the trigger time of sources on other platforms, be they ships or other AUVs. However, the potential improvement in detection and coverage rates offered by bistatic sonar concepts makes resolution of these issues a high priority. In this paper, the problems of inaccurate navigation and source timing information are addressed for the Generic Oceanographic Array Technology data set. In this experiment, conducted off Marciana Marina during June 1998, a MIT AUV with a SACLANTCEN acoustic array and acquisition system was used together with a TOPAS parametric sonar to explore issues of buried target detection using AUVs. In this paper, solutions to the navigation and timing problems are proposed which enable the effective use of bistatic synthetic aperture sonar (SAS) concepts for the detection of buried objects in the mid-frequency regime of 2-20 kHz.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:27 ,  Issue: 3 )